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Instabilities in Kohonen’s self-organizing feature map 
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Utreehts Biofysica Instituut, Princetonplein 5,  PO Box 80 000. 3508 TA Utrecht, 
T h e  Netherlands 

Received 21 September 1992, in final form 1 October 1993 

Abshact. The topolopg-presming representation of a ixiangular part of space onto a 
square network of formal neurons is nudied using thc Kohoncn algorithm. Linear stability 
analysis shows thai there IS a critical n t i o  for the sidcr of the rectangle. For la.rger ratios 
the map becomes unstable. Thc value of the critical ratio depends on the actual shape of 
the adjustment function. The problems connot be scaled away in the case of inhomogcne- 
ously sampled inpul space. The rcsults of the analysis are compared aith computer 
simulations. 

1. Introduction 

In this paper we study a model for topological map formation. Such models might 
describe observed activity patterns in the brain. On the other hand, the specific model 
we study has applications in robotics and data segmentation and classification tasks. 
Let us, however, start with the biologically inspired models that have been proposed. 
We give only an outline; for more details and arguments we refer the reader to the 
literature. 

Studies of topology conserving maps usually involve a two-layer, feedfonvard net- 
work of neurons. The two layers interact through (modifiable) synaptic couplings. The 
first layer is the sensory layer, the second is a layer which, subject to input from the 
first layer, develops a structured activity pattern. Henceforth we will refer to the sensory 
layer neurons as ‘sensors’. Both sensors and neurons are elements with continuous 
responses. The mechanism responsible for the formation of the activity pattern in the 
second layer has been proposed to be a short-range excitatory and long-range inhibitory 
in-layer interaction between neurons. This interaction is realized through in-layer synap- 
tic couplings. Actually, this second layer is short-hand for two layers, one with excita- 
tory, the other with inhibitory neurons [I-4,6]. 

The in-layer synaptic couplings of the second layer are usually kept constant. Each 
neuron receives signals both from other neurons and from the sensors (sensory neurons). 
Its activity depends on the total input it receives, and the dynamics can be introduced 
in a straightforward manner, and has been investigated in [Z]. Topological map forma- 
tion is further pictured as follows. Relaxation subject to the sensory input leads to 
clustering of activity, to some degree 121. Subsequently, a Hebbian rule (see e.g. [ 5 ] )  is 
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used to modify the synaptic strengths of the between-layer couplings. It is in these 
couplings that the information is stored. The time scale for neuron dynamics is much 
shorter than that for synaptic dynamics. After presenting sufficiently many randomly 
chosen examples, the synaptic strengths, through self-organization, will have become 
such that the activity in the network tends to the same topological structure as the 
input that is presented to it through the sensors. In case of non-matching dimensionality 
of input space and network. the most significant dimensions will be represented. 

Although one usually thinks in terms of continuously varying firing rates of the 
neurons, it is also possible to mode! the neurons by binary elements 161. 

Theoretical analysis of the system, described above is rather complicated. In order 
to circumvent some of the problems, Kohonen has proposed the well known ‘winner 
takes all’ algorithm [7,8]. From a physiological point of view, however, this approach 
has  the drawback of involving a non-local mechanism in the form of the ‘supervisor’ 
determining which neuron is the ‘winner’. Nevertheless, the model has nice properties, 
and is widely used in applications like robot learning, topographic map formation, 
classification of x-ray data, etc [9, IO]. It is thus worthwhile to study the convergence 
and stability of this algorithm. Points of interest have been the required behaviour 
of learning parameters, metastable states, form of the equilibrium configuration etc 

In this paper we study the robustness of the Kohonen algorithm against arbitrary 
sensor characteristics. As an elementary property of the sensors we take the ranges of 
their outputs. We find that the linear stability depends quite critically on the ratio of 
the ranges of different sensors. The consequence of this instability is that the map 
becomes of a different nature. In fact we find that the map may develop in such a way 
that the key property of the model, i.e. preservation of topology, breaks down. 

The paper is organized as follows. In section 2, we define the model. In sections 3 and 
4 we give an analysis of the fluctuations around the equilibrium map, a generalization of 
a study carried out by Ritter and Schulten [12]. In section 5 we investigate which modes 
become unstable for which ratio. In section 6 we present several simulations to compare 
with the theory. Section I contains comments and conclusions. 

[ll-13]. 

2. Model 

In general, the Kohonen model [7,8, 11, 121 maps a multi-dimensional input space 
onto a &dimensional network. The situation in the cortex suggests the study of the ti= 
2 case. For real-space representation in robotics one conveniently takes d= 3.’The input 
usually lies on a hyperplane parametrized with few parameters, e.g. many muscle spindle 
signals depending only on position and velocity of limbs. 

We restrict ourselves here to the case in which the input is taken from a rectangular 
part of two-dimensional space. It is mapped through two sensors, just measuring 
Cartesian coordinates, to a two-dimensional N ,  x N,. network. The network thus con- 
tains N=N.yN,. units. We take the connectivity of the network to be square. The units 
are labeled by Y and distances in the network are measured in units of the lattice spacing. 
Every unit is coupled to the two spatial directions of the input space by adaptive weights 
J,= (J ,? ,  J2,)T, where the superscript denotes transposition of a vector or matrix. The 
activity of unit I’, upon presenting an input s to the network. depends monotonically 
on the inner product s*J,, e.g. the post-synaptic potential. The maximally responding 
unit is then said to ‘represent’ the input s. 
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Hebbian learning is realized here by replacing J,  by J,+Es for the maximally 
responding unit and its neighbours. E is the (small) learning parameter. In order to 
prevent weights from growing infinitely, one could include a synaptic decay process, 
or, following Kohonen, a normalization of the synaptic weights J,. The latter costs one 
degree of freedom, so for a two-dimensional representation of a two-dimensional input, 
one thus needs three components of s and the J,. These steps are repeated for every s, 
drawn subsequently from the input space. 

This was the scheme Kohonen originally proposed [7]. 
One easily shows that the problem can be reformulated, for small E, in terms of 

distances. In this case no normalization is needed. For a theoretical analysis, this is a 
more convenient formulation, and we will use it from here on. 

In this approach, the point s= (SI, ~ 2 ) ~  is represented by unit Y, given by 

where I(.II denotes the usual square vector norm. Unit r represents all input points s 
that are in its feature set: 

F,F,-{slVr’#u: IIJ,-.TII < IIJ,-sll). (2.2) 

Upon exposure to an examples from input space, learning proceeds for every r’ accord- 
ing to 

Jt-+J,+ EI&(s-&) (2.3) 

i f s  is in the feature set of neuron r.  h:, is the network neighbourhood function, which 
is usually taken to depend symmetrically on the difference r-r’ and decays with increas- 
ing distance. The occurrence of these neighbourhood relations in the learning rule is 
the origin of topological map formation. (Note that J, inside the brackets cannot be 
considered as synaptic decay, because this ‘decay’ is subject to the neighbourhood 
function h:“..) For example, a typical choice for the neighbourhood function, for which 
only nearest neighbours are ‘dragged along’ with the ‘winner’, would be 

% = 6 , t +  6 , + , t  (2.4) 
n-*r,.ac,. 

where 6,,. is the Kronecker delta function. e, and e,. are unit vectors (in the network) 
in the x- and y-direction. 

If the s are drawn randomly from the input space, according to some probability 
density P(s),  the steps described above define a Markov process. Starting from random 
couplings J,  and meeting certain conditions (which we will indicate later on), a topologi- 
cally correct representation of input space will emerge. Recently, the occurrence of 
metastable states has been investigated in more detail [15]. 

3. Fokker-Planck equation 

The set of couplings J=(J,, , Jn, . . . , J,) determines the state of the system, and we 
will henceforth refer to J as the state. In every Markov step this state changes from J’ 
to J according to (2.3), or formally: 

J =  T(S, s, E) .  (3.1) 
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The transition probability for going from state J’ to J is given by 

S(J- T(J’, s, s))P(s) ds. (3.2) 

In order to apply methods from statistical mechanics, one considers an ensemble of 
these systems, whose states J a t  iteration time I are distributed according to a distribu- 
tion function S(J, t ) .  The evolution of the distribution function 9 is described by the 
Chapman-Kolmogorov equation [ 141 

S ( J , f + l ) =  d S  Q(J,S)S(J’, t) .  (3 .3)  s 
This expression has been further analysed in 1121 as follows. One assumes the existence 
of a stationary expectation value ( J ) .  which is the solution of 

lim dsP(s)T((J) , s ,  E ) = ( J ) .  (3.4) 
Cl0 s 

As long as E does not equal zero, the map will fluctuate around this stationary solution. 
The fluctuations are proportional to fi (see later, e.g. equation (3.17) and equations 
(4.18) and (4.19)). 

Next, 9 is expanded in deviations j =  J -  ( J )  from this stationary state, keeping 
only derivatives up to the second order, and of these only the leading order in E.  This 
requires the learning parameter E to be small enough such that the individual Markov 
steps are sufficiently small. The resulting equation is given by [I21 

This is known as the multivariate linear Fokker-Planck equation (see e.g. 1141). The 
centre of the distribution function has been shifted to the origin: 

Sij, I ) E ~ ( ( J ) + ; ,  I ) .  (3.6) 
The constant 2 x 2 matrix B,, is given by 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

and 

F,(J) E P(s) ds. s FrV)  
(3.11) 
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The difference between h,,. and h:r. is only of order E. One easily interprets -EV,(J) as 
the amount by which, given a state J, the individual J, is modified. The 2 x 2 matrix 
D,, is given by 

r 

&(J) 31 hm& (Jr - O>,.)(J,- (s>r.))I'*(J) (3.12) 

+s ( s s T - ( s ) ~ ( s ) ~ ) P ( s )  ds . (3.13) 

By B, D,  etc, we will denote the corresponding 2N x 2 N  matrices. The first-order term 
in (3.5) is the restoring force, the second-order term is the diffusion term. An initial 
j ( t = O )  will decay according to 

G)(t) = e-"'?(o). (3.14) 

The first moment of the distribution thus depends only on B. The second moment also 
depends on the diffusion term in the Fokker-Planck equation. The system is stable if 
the matrix B is positive definite. If it is, the infinite time expectation value is given by 
G)= ( J - ( J ) )  =O. Whether or not the eigenvalues of B are positive will be the main 
issue of this paper. If they are, and choosing a &distribution as initial condition: 
S(j, 0) = S(j) = rIJ(j,), the distribution function S(j, I )  will be a Gaussian [ 141 : 

S(j,  t)=det(ZnC)-"' exp(-ijTC-'j) (3.15) 

r L 
F , W  1 

where C is the correlation matrix 

C( I )  = (y) (3.16) 

which depends on Band D, in the context of the Fokker-Planck equation (3.5). With 
certain requirements for the long-time behaviour of E(t) (decreasing to zero, but with 
divergent time integral [IZ]), the equilibrium state (3.4) will be reached. 

In the present study we are interested in the behaviour of the system subject to a 
constant learning rate E.  We will encounter situations in which the matrices B and D 
commute. In that case, the long-time correlation matrix is simply given by 

c(t=oo)=2 e-ER'De-"BT' dz=E(B+BT)-'D (3.17) 

where the commutation is used in the last equality. Note that these results only hold 
in the stable case, i.e. for positive definite B. 

so- 
4. Rectangle-to-rectangle mapping 

As a representative case, we will henceforth assume that the input is taken from a 
rectangle of size A,N, x A,.N,. with uniform sampling density P(s) = (&NxA,.NY)-'. The 
stationary configuration is then one of eight possible configurations, as the algorithm 
is invariant under reflection and rotation, where the rotation group has four elements 
for the geometry considered. 

Next, we impose periodic boundary conditions in input space as~well as in the 
network, such that the stationary state becomes translationally invariant. We measure 
the distance in the network in units of the nearest-neighbour inter-neuron spacing. We 
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are further free to take the orientation in the network such that the x- and y-direction 
correspond to those in input space. After these remarks, we can write the stationary 
state as 

( J ) , =  Ar (4.1) 
where A is a diagonal matrix with elements A,  and A,. Then, the feature sets are of 
size A,x A,.. Equation (4.1) satisfies equation (3.4). We are interested in the stability 
of this stationary configuration. The form of the distribution function is specified if we 
calculate the correlation matrix (3.16), which in special cases reduces to (3.17). 

Due to the translational invariance, the 2 x 2 matrices E,, and D,, depend only on 
the difference 1-1'. Therefore, we can decouple the Fokker-Planck equation (3.5) if 
we represent S ( j )  in terms of Fourier mode amplitudes 

etc. Recall that N =  N*N,. By separation of variables, i.e. setting 

SG) = n $&) (4.3) 
k 

the resulting mutually independent Fokker-Planck equations are: 

=l N [i(O)I -h^(k)b(k) - i(AVki(k))g(k)T] (4.5) 

(4.6) 
1 
N 

h ( k )  =- [(.4Vhh'(k))(AV,$(k))T + ~Wh^(k)~]  

with 

ds(ssT- (S),(S);)=- (4.7) 

where M is the correlation matrix of the inputs s over feature set F,. Due to translational 
invariance, the feature sets differ only by their centroids, but are otherwise identical. 
Hence M does not depend on r. The Fourier transform of the neighbourhood function 
is 

i ( k )  = e*"h,, (4.8) 

independent of v'. The matrix a and the vector b are given by 

(4.9) 

(4.10) 
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a measures the shift of the centre of a feature set and b the change of the corresponding 
volume, under small deformations of the stationary state. They do not depend on the 
neighbourhood function, but only on the geometry of the stationary configuration, 
which is related to the network geometry. Carefully doing the geometry yields: 

u,,=6,,Diag(f+$ ,z+aR )+(6+,+a.+6,,r-c,J Diag($, -&RZ) I - Z L  I 2  

+ (&,.,++ + &,,r-c,) &-', i) (4.1 1) 

where Diag(d, , d2) is a diagonal matrix with elements d, and dz, and R denotes the 
ratio of the sides of the feature set: 

AY R=-. 
A ,  

(4.12) 

Further: 

The Fourier transforms are 

B(k) =Diag($+f cos k., +:RT2( 1 -cos kJ, ;+$cos ky + iRz( 1 -cos kJ) (4.14) 

A;' sink, 
A;' sink,. 

$k) = -i (4.15) 

~ ~ With constant E, the matrix E(k) gives the speed with which a fluctuation with wave- 
vector k decays exponentially with time. From here on we will only deal with infinite 
time quantities, i.e. when the distreution function S has reached its stationary form. 
For the case of commuting B and D,  the variances of the fluctuations are the diagonal 
elements of the correlation matrix, which is given by 

C , = ( 3 2 ) = & ( $ k ) + i T ( k ) ) - ' f i ( k )  (4.16) 

where * denotes complex conjugation. 
For symmetry reasons, we only have to,  consider k-vectors in the interval 

[O, K] x [O, IZ]. It is convenient to consider a representative case. We choose the wave- 
vector k along the x-axis. The Cartesian components of the deviation vectors can then 
be distinguished in a component parallel to the wavevector and one perpendicular to 
it. The situation with k along the y-axis can be obtained by interchanging (A.y, NJ 
with (A,.. N,.). For an isotropic system we could have taken any direction of k, but the 
square lattice is not isotropic. 

Note that in general the only OK-diagonal elements in g(k) occur in the last term 
of (4.5). pne  easily checks that for any wavevector k along a coordinate axis the 
matrices B(k) and D(k) are diagonal, so (4.16) applies and also C(k)  is diagonal. This 
is due to the fact that 6̂  is an odd function of k and h  ̂ an even function of k. 

If we introduce the notation, with k=(k, QT, 

A L = A ,  i(k)=;((k, O)T) (4.17) 
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the resulting expressions for the variances, i.e. the diagonal elements of C(k), are 

The overall factors A f  and A :  ensure a correct scaling behaviour. Apart from this 
factor, the longitudinal variance does, not depend on the dimensions of input space, 
unlike the transverse variance. The denominators in these expressions are the eigenyal- 
ues of the matrix Bfk), which we have denoted by Bll(k) and Bl(k) ,  respectively. h(k) 
is a sum of cosines of multiples of k. So for k+O we have i (0) -Z(k)=U(k2) ,  corre- 
sponding to a 1/k2 divergence of the variances for small k, i.e. zero-eigenvalues of the 
matrix &O). An overall translation of the J (i.e. a k=O mode) is not restored. This is 
caused by the translational invariance of the system. 

Let us, for example, consider the typical neighbourhood function (2.4), with Fourier 
transform 

(4.20) ;(k)= 1 +2 cos k,+2 cos ky i(k) = 3 + 2 cos k 

we have 

* 2 - A 2  44 sin2 k+ 12 cos k+ 13 
( ' j ' ' '  ) - E  'I 12(1-cosk)(ll+6cosk) 

(IiL' )- 
* 2 -  2 (3 + 2 cos k)2 

4( 1 -cos k)( 12- 3R2-2R2 cos k) 

(4.21) 

(4.22) 

Analysis of the denominator of the last expression, essentially the eigenvalue BL, shows 
that the lineur sfnbility of the transverse mode bwaks down for a critical ratio of the 
feature set dimensions: 

(4.23) 

For R=AL/Aa >RZ, the small-k or long-wavelength modes become unstable. For 
example, for R = 1.65 all modes with k < a/4 are linearly unstable, for R = 2 those with 
k < z/2, and for R = 3 those with k < 0.81 a. The same value was found in [ 121 for a 
mapping from a three-dimensional input space to a fwo-dimensional network of formal 
neurons, which we will comment on briefly. The first two dimensions of the input 
concern a square part of space and the network too has equal numbers of units in 
either direction. As long as the additional third dimension is negligible, the square-to- 
square map is trivially given by (4.1). However, with the third dimension becoming 
more important, the two-dimensional variety containing the ends of the weight vectors 
J has to account more and more for that third dimension. At some point, when the 
size ratio equals m, the variety really starts to fold into the third dimension. In the 
Fourier analysis this corresponds to initially some and finally all modes becoming 
unstable. As it is a representation of a three-dimensional space by a two-dimensional 
network, the property of topology preservation is not the same as the property of 
preservation of ordering. 
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In the present case of a two-dimension-to-two-dimension mapping, however, 
ordering and topology are closely related. Our analysis implies that it may happen that 
the feature sets of two adjacent network units are interchanged, while the relative 
positions of the feature sets of surrounding units remain unaltered. Consequently the 
topology of the network is no longer the same as the topology described by the ends 
of the weight vectors. 

We stress that this instability and possible topoIogy uiolation occurs for relatively 
small ratios of the input space dimensions: the first modes become linearly unstable 
already at R-1.549, which is of the order of unity. It is thus not necessary to go to 
high or extreme values for R.  

In the following we will study this effect in more detail for general neighbourhood 
functions. 

5. Critical ratios 

In this section we analyse the critical ratios for general neighbourhood functions h,,.. 
Intuitively, one expects the long-range fluctuations to be damped more effectively if the 
range of h,. is wider; this would correspond to a larger critical ratio. We investigate 
this in more detail. 

Before we start, we remark that for ratios smaller than one, there is no instability 
of the transverse mode. This is clear from (4.21) and (4.22), and is also true for the 
general case given in (4.18) and (4.19). But of course, for R < 1  it is more interesting 
totakethewavevectorkalongtheydirection,~~ that All=A,.,Al=A,and thus R > I .  
We conclude that we should only consider R 2  1. Unless, of course, the critical ratio is 
smaller than unity, in which case even the square-to-square map is unstable. 

First we look at the modes k = ( k ,  0). Later we will also consider k,.#O. 

5.1. Modes k =  (k, 0)' 

Let us write h,=h,,, where l=rr ,  m=r,., satisfying the symmetry: l~,,n=hlll.l,8,1. Then 
m 

L(k) = eiIk hhv = HI cos Ik 
I ?" I=O 

where 

Hi=(2-6m) hm+2 h,,H (5.2) ( 111- I 

The eigenvalue i l ( k )  (see (4.19)) then vanishes if 
HI (1 -cos Ik) =iR2( I -cos k )  HI cos lk. (5.3) 

This equation determines the ratio R,(k, 0) for which themodes with wavevector ( k ,  0)' 
become unstable. The quantity we are finally after is the minimum 

/ = I  i=o 

gR ,=min  R,(k,, E,,). (5.4) 

RZElim &(k, 0) (5.5) 

k,& 

Here we have k,.=O.  if we further define 

k-0 
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a small k analysis yields . .  

i.e. proportional to the second moment of h in the parallel direction.-(Note that 
HI=&,,, h,.=$(O).) For this ratio the @@)-term of the eigenvalue BI vanishes. 

The O(k4)-term is positive. For larger ratios, however, the O(k2)-term becomes negative, 
and the stationary state (3.4) is unstable. 

It is clarifying to consider some simple examples for the neighbourhood function. 
We can take for instance a ‘cross’ neighbourhood, i.e. hs.= 1 only on the axes I=O and 
m=O, up to nli(nL) in the parallel(perpendicu1ar) direction. Then [I51 

(5.7) 

Or we can take the ‘rectangle’ neighbourhood where h,.,= 1 only on a rectangle of size 
(1 +2nli) x (1 +2nL) and otherwise zero. This is an example of a neighbourhood func- 
tion which is separable. In the case of separability, i.e. when we have the form 

h/,n =hl(l)fl(m) (5 .8)  

the upper limit in the sum in (5.2) is independent of I and the relevant quantity Ifi/Ho 
in (5.3) reduces tof;i(l)/fb(0). The extent of the neighbourhood in the perpendicular 
direction is irrelevant under these conditions. Note that the Gaussian is an example of 
this class of functions. For the rectangular neighbourhood function withfi,(l) =constant 
up to I=nl l ,  we find 

R:’= 2nl,(nli + 1) (5.9) 
independent of nL . 

Note that R:-0(nl)  for large n,. 
As another toy case we consider h0,=I ,  h,,,=p if 12+n?=1, and zero otherwise. 

Then 

(5.10) 

a monotonic function of p, with maximum 3 for P - w .  
It is also useful for the sequel to have analytic results for k=z. Just substituting 

this value in (5.3) yields critical ratios for the ‘cross’ and ‘rectangle’ neighbourhood 
functions. The results are: 

1+2n,-(-I)”I R:(z, 0) = 3 
2nL + (- 1)“11 

(5.1 1) 

and 

R:(z, 0)=6nli (5.12) 

respectively. The latter expression (for ‘rectangle’) only applies for even rill. For odd 
nl, the mode k = ( x , O ) I  is stable for all R. Note that both k = z  results behave as 
RJa ,  O)-O(&). More neighbours have to be ‘dragged along’ in order to remove this 
instability with respect to the k=O instability. 
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‘Cross’ neighbourhood: 

(nll,nl)=(2, 2) with R2-2.58 and R,(a,0)--1.55. 

(nll ,nL)=(3, 3) with R.O-3.60and Rc(0.74n, 0)~1.73.  

Finally, we multiply h,,, by exp(-a(12+in2)). For a sufficiently large, the precise form 
of the region where h is non-zero is not relevant. Recall that convergence to equilibrium 
is obtained for E+O and the width of h to zero. This would correspond to a+m. 
In figure 1, figure 2 and figure 3 we have also plotted curves with non-zero a. For 
large a, corresponding to a very peaked h, the critical ratio becomes even less than 1 
for all k. 

A very peaked h may also be described by (5.10) with p small. We observe that for 
P > & = i  the critical ratio is smaller than one, so even the R= 1 case is unstable. 
Including the next-nearest neighbours with strength p we would obtain, using (5.2) and 
(5.6), Os=&, and by including them with strength p2  we would have &=A. Here we 
have the important result that apparently the ‘dragging’ along of the neighbouring 
synapses has a lower bound for the map to be linearly stable. 

Table 1. Critical ratios, and the modes which become unstable first. The Erst column con- 
tains the neighbourhood function h. denoted as (q , n,)r or ( n x ,  a& for rectangular or 
‘cross’ neighbourhood functions, respectively. The second column contains the minimal 
critical ratio. and the third column the k,value for which this minimum is attained. In the 
fourth and rightmost column we give the ratio at which the k=O-mwle becomes unstable. 

I1 &l+O k.. R I & * - k . - O  

(1, I)c 1.549 0 1.549 
(2,21c 1.549 IT 2.582 

(4,4)c 1.633 IT 4.602 
(5, 1.710 2.612 5.606 
( 6 . 6 ) ~  1.664 IT 6.609 
(7.7)c 1.706 2.746 1.61 I 
( 8 . 8 ) ~  1.680 IT 8.613 

(1. I)r 2 0 2 

(3,3)C 1.735 2.332 3.595 

(2,2)r 3.464 IT 3.464 
(3.3)r 4.426 2.257 4.899 
(4.4)r 4.899 IT 6.325 
(5.5)r 5.579 2.574 ~ ~ 7.146 
(6,6)r 6 z 9.165 
(7,7)r 6.547 2.724 10.583 
(8,8)r 6.928 IT 12 

Some typical values of the critical ratios are given in table 1, together with the 
corresponding neighbourhood functions and the k,-value of the mode which is the first 
to become unstable. 

5.2. Modes k=  &, kJr 
The above analysis determines the ratios R,(k) for which the modes (k, 0)’ become 
unstable. However, for the system to be dectared stable one usually requires all indi- 
vidual modes to be stable. At the moment we only have derived upper bounds for the 
ratios at which there is stability. 
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The lo>gitudinal components of the modes investigated above is always stable 
(because BIl > O ) ,  so Q priori we do not expect a general mode &, 5.) with k,.#O to 
become unstable for yet smaller ratios, because neither Cartesian component ofj(k) is 
completely perpendicular to the wavevector. These arguments would apply, however, 
to an isotropic system, which our square lattice of formal neurons unfortunately is not. 
So in order to determine at what critical input space ratio the system looses its linear 
stability we should carry out the staJility analysis for genetal modes. 

For k,.#O and k,#O, B(k) and D(k)  are not diagonal; B(k) is not even symmetric. 
In general these matrices do not commute and therefore the last equality in (3.7) does 
not hold. Hence the analysis becomes much more complicated, see e.g. [IS]. We have 
not carried out this analysis. 

6. Simulations 

To test some of the above theoretical results, we have performed some numerical 
simulations. We used square networks with N, x N y  units, where NY= N,.. The network 
was initialized with the stationary state given in (4.1). We used periodic boundary 
conditions. Every N, iteration steps we took a snapshot and calculated the Fourier 
amplitudes. N, was chosen such that on the average every unit was updated about 10 
times between two successive snapshots. N, depends on the number of units and on the 
form of the neighbouring function h. We only considered modes with k,.=O. 

We give a comparison between simulations and theory for some typical values of 
the ratio R = AI/Aa > 1 with small E. Recall that for R < 1 nothing dramatic is happening 
and we should take the wavevector in the other latti-ce direction, and replace R-’ by 
R, which is then taken larger than 1. The square case ( R =  1) has already been done in 
[12].  Simulations for rectangular input sets agree rather well with the theory. It is more 
interesting to test the theory with the more exotic ‘cross’ neighbourhood function. We 
present the stable’cases ‘cross’ (e,, , nl) = ( I ,  I )  with R =  1.5 and ‘cross’ (nil,  nL) = ( 3 , 3 )  
with R=1.67 in figure 4 and figure 5 ,  respectively. We plotted the variance of the 
orthogonal component. The theoretical curve for the cases presented is not reached for 
every k. This may be due to the higher-order fer.nu which we left out of the analysis. 
They may prevent the system from moving away too far from its stationary state. 

In figure 6 we give the parallel component for the latter case. We also show the 
unstable case R = 2  in figure 7 .  Although the system is unstable and the theory does 
not apply, the ‘stable’ modes still seem to follow the theoretical curve. 

A map with a very large ratio ( R =  10) is presented in figure S. Almost every mode 
is linearly unstable here. It may be that for such high ratios the higher-order terms also 
fail to keep the solution sufficiently close to its stationary form. For one or both of 
these reasons, it turns out that at some points in the map the topological order is 
violated (‘folds in the fishing net’). The large-scale order, however, is preserved. The 
formation of these topological maps is an essentially nonlinear phenomenon. A linear. 
stability analysis, as presented in this paper, only applies close to the stationary state 
(3.4), and does not explain the preservation of global order. However, the present study 
provides a better understanding of the nature of the map. 

7. Discussion 

The Kohonen algorithm aims at ordering any input according to its major axes. The 
general scheme for obtaining this ordered representation is  as follows. One starts with 
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Figure 4. Comparison of theory and simulations for 
the neighbourhood function (2.4) and R= 1.5, while 
R= RE= 1.549. Plotted is the variance of the fluctu- 
ations orthogonal to k=(k,  O)T. 
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Figure 6. The fluctuations parallel to k=(k ,  O)T, cor- 
responding to figure 5. 
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Figure 5. Comparison of theory and simulations for 
the 3 x 3  ‘cross’ neighbourhood function with R= 
1.67, while RZ=3.60 and R,z&(0.74~,0)=1.73. 
Plotted is the variance or the fluctuations orthogonal 
tok=(k,O)‘. 
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Figure 7. Transverse fluctuations of model with 
neighbourhood function (2.4) and R = 2 .  This  situ- 
ation is unstable. The ‘stable’ modes, i.e. with k>$z 
still follow the theory rather well. 

a rather wide neighbourhood function /I,,. and a rather large learning parameter E. This 
prevents the algorithm from ending up in a ‘twist’ or ‘butterfly’, a metastable state in 
which for instance J, is a monotonically increasing function of r., on one end of the 
network (say r,.=O), and a monotonically decreusing function of,rr at the other end of 
the network (r,.=N,.). The metastable states of the one-dimensional Kohonen map have 
recently been studied [ 131. Final convergence of the map is obtained by decreasing the 
range of h, and decreasing E ( f ) .  
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Figure 8. Map with R= 10 (horizontal size/vertical size). 40 X 40 units, & = & I  h as in (2.4). 
Started from the stationary state. IO6 steps are taken. One easily identifies points where 
topological order is violated. 

The equations for the stationary map were given in [ 111 ; ~ ( t )  has to decay to zero 
for f-+co, while J E(f) df has to diverge [12]. 

The stationary map equations were derived (i) for a continuous network with (ii) 
width of h to zero and (iii) E+O. However, in a realistic situation none of these will be 
the case. First because the number of units used in a computer simulation is finite. 
Probably the same remark applies for the small part of the brain which the Kohonen 
model usually models. So h with small width necessarily has also a finite number of 
units. Second, in order to let the system interact with its environment by adapting to 
changing circumstances, one has to maintain the learning parameter at some finite 
value. The present study incorporates these two facts. 

The results described in this paper indicate the difficulties that may arise in applica- 
tions of the Kohonen map. 

We provide arguments that the ranges and units in which the sensory input is 
measured and subsequently presented to the network. have to be chosen with some 
care. Othertyke, the map becomes linearly unstable. We have also given upper,bounds 
for the ‘peakedness’ of h, in order for the regular case R = 1 to be stable. 

The instabilities we find lead to uio/ations of the important property of topology 
preservation. This is unlike the instability found earlier [12] for the representation of 
a three-dimensional input space by a two-dimensional network. 

Inclusion of higher-order terms in the theory complicates it dramatically, because 
then Fourier transformation does not decouple the equations for different k. 

The instabilities we have found can only occur for dimensionality greater than one. 
In one dimension there is only one mode, the longitudinal one, which is always stable. 

Some remarks can be made concerning the implications of our results. 
If inputs are taken from the input set with homogeneous sampling density, one 

could simply rescale the input ranges in order to prevent instabilities; the anisotropy 
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of the feature sets has to remain within bounds given in this paper. However, this 
assumes prior knowledge of the inputs, contrary lo what the model was ‘invented’ for. 

More serious are the problems when the input set is sampled in an inhomogeneous 
manner. This causes the stationary state (see for instance [ I  I]) lo have feature set 
anisotropies that vary over the network. Simple rescaling is impossible then. In a general 
application this will be the case. Take for instance the map formed on the basis of muscle 
spindle information, or even for the hypothetical case that arm position information is 
available through ‘joint angle sensors’ [16]. Even in the case of linear sensor character- 
istics, this involves a non-trivial Jacobian of the transformation from Cartesian coordi- 
nates to joint angles. Additional transformations arise from the nonlinearity of the 
sensor characteristics; see for instance [17]. In addition the space that is to be represen- 
ted is likely to be sampled in an inhomogeneous manner. 

The difficulties might be dealt with by a modification of the algorithm. One can let 
the neighbourhood function depend locally on the map formed thus far. The width in 
a certain direction should then be chosen as a function of the local ratio of the size of 
the feature set perpendicular and parallel to this direction. We have not tested this. 

A further interesting point to investigate is whether the stability of the model is 
increased if the square network connectivity is replaced by a hexagonal connectivity. 

We have not ruled out that for certain neighbourhood functions the first mode to 
become unstable may not have k along one of the axis. This would possibly originate 
from non-isotropy of the network, in which case it would be interesting to check if a 
network with hexagonal connectivity also has this property. 

We conclude by summarizing the results. We have demonstrated that the topological 
map formed by the Kohonen algorithm may not be linearly stable if the feature sets 
of a square network of formal neurons are rectangular instead of square. We have 
given examples for which this leads to violations of order in the map. Nigher-order 
terms are assumed to be responsible for the mere formation and the large-scale stability 
of the map. We have investigated some typical forms of the neighbouring function, and 
the corresponding critical ratios, for which certain modes become unstable. Finally we 
have suggested a local technique that lifts the instability. 
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